Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Int J Antimicrob Agents ; : 107162, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561093

RESUMO

AIMS: Fosfomycin has regained attention for treating infections caused by methicillin-resistant Staphylococcus aureus and multidrug-resistant coagulase-negative staphylococci. In this research, our objective was to investigate the mechanisms underlying fosfomycin resistance in Staphylococcus capitis. METHODS: The minimum inhibitory concentrations (MICs) of fosfomycin were assessed in 109 clinical S. capitis isolates by the agar dilution method. By cloning the fos-like genes into the shuttle vector, pTSSCm-Pcap, and observing the change in fosfomycin MICs, the gene function was verified. Core genome multilocus sequence typing and comparative genomics analysis were conducted to determine the population characteristics of S. capitis isolates and analyze the genetic environment of the fos-like genes. RESULTS: We identified a novel fosfomycin resistance gene, fosSC, on the chromosome in 58 out of 109 (53.2%) S. capitis isolates. The deduced products of the fosSC genes shared 67.15-67.88% amino acid sequence identity with FosB. The RN-pT-fosSC transformants carrying fosSC showed a 512-fold increase in the fosfomycin MICs. The fosSC gene was embedded in a conserved genetic context, but IS431mec was located to the left of the fosSC gene in cluster L due to the insertion of staphylococcal cassette chromosome mec. CONCLUSIONS: The chromosomal fosSC genes in some lineages of S. capitis explained their high-level fosfomycin resistance. Ongoing surveillance is crucial for monitor the potential threat of horizontal transfer, which could be facilitated by the presence of mobile genetic elements surrounding the fosSC gene.

2.
Antimicrob Agents Chemother ; : e0115923, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506549

RESUMO

Vancomycin heteroresistance is prone to missed detection and poses a risk of clinical treatment failure. We encountered one clinical Enterococcus faecium strain, SRR12, that carried a complete vanM gene cluster but was determined as susceptible to vancomycin using the broth microdilution method. However, distinct subcolonies appeared within the clear zone of inhibition in the E-test assay, one of which, named SRR12-v1, showed high-level resistance to vancomycin. SRR12 was confirmed as heteroresistant to vancomycin using population analysis profiling and displayed "revive" growth curves with a lengthy lag phase of over 13 hours when exposed to 2-32 mg/L vancomycin. The resistant subcolony SRR12-v1 was found to carry an identical vanM gene cluster to that of SRR12 but a significantly increased vanM copy number in the genome. Long-read whole genome sequencing revealed that a one-copy vanM gene cluster was located on a pELF1-like linear plasmid in SRR12. In comparison, tandem amplification of the vanM gene cluster jointed with IS1216E was seated on a linear plasmid in the genome of SRR12-v1. These amplifications of the vanM gene cluster were demonstrated as unstable and would decrease accompanied by fitness reversion after serial passaging for 50 generations under increasing vancomycin pressure or without antibiotic pressure but were relatively stable under constant vancomycin pressure. Further, vanM resistance in resistant variants was verified to be carried by conjugative plasmids with variable sizes using conjugation assays and S1-pulsed field gel electrophoresis blotting, suggesting the instability/flexibility of vanM cluster amplification in the genome and an increased risk of vanM resistance dissemination.

3.
Healthcare (Basel) ; 12(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38470642

RESUMO

It may be possible to enhance adults' cognitive health and promote healthy aging through processing speed training using the Useful Field of View (UFOV) related activities and software. This study investigated the impact of utilizing UFOV on processing speed improvement in older adults in response to the growing global attention on cognitive health and aging issues. In this quasi-experimental study, 22 individuals (mean age ± SD = 71.9 ± 4.8) participated in the experimental group, and 20 community-based participants (mean age ± SD = 67.1 ± 4.8) were in the control group. The intervention involved ten sessions of UFOV training, each lasting 60 min, conducted twice a week for the experimental group while the control group engaged in volunteer service activities. Measurements of Counting Back, Fabrica, Double-Decision, and Hawkeye were administered to all participants before and after the intervention. The results showed significant improvements in the experimental group for the four measurements (p ≤ 0.01, 0.05, 0.001, 0.001) and non-significant gains in the control group (p ≥ 0.05) for all. Furthermore, mixed repeated-measures ANOVA analysis, with time 1 pre-test measures as the covariate, revealed significant interaction effects between time and group for all measurement indicators (p = 0.05, 0.01, 0.05) except for Fabrica (p > 0.05). In conclusion, these findings support the effectiveness of UFOV cognitive training interventions in enhancing specific cognitive abilities.

4.
J Biol Chem ; 300(4): 106794, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38403245

RESUMO

Retinal bipolar and amacrine cells receive visual information from photoreceptors and participate in the first steps of image processing in the retina. Several studies have suggested the operation of aerobic glycolysis and a lactate shuttle system in the retina due to the high production of this metabolite under aerobic conditions. However, whether bipolar cells form part of this metabolic circuit remains unclear. Here, we show that the monocarboxylate transporter 2 is expressed and functional in inner retinal neurons. Additionally, we used genetically encoded FRET nanosensors to demonstrate the ability of inner retinal neurons to consume extracellular lactate as an alternative to glucose. In rod bipolar cells, lactate consumption allowed cells to maintain the homeostasis of ions and electrical responses. We also found that lactate synthesis and transporter inhibition caused functional alterations and an increased rate of cell death. Overall, our data shed light on a notable but still poorly understood aspect of retinal metabolism.

5.
J Hepatol ; 80(5): 714-729, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336348

RESUMO

BACKGROUND & AIMS: Mechanisms behind the impaired response of antigen-specific B cells to therapeutic vaccination in chronic hepatitis B virus (HBV) infection remain unclear. The development of vaccines or strategies to overcome this obstacle is vital for advancing the management of chronic hepatitis B. METHODS: A mouse model, denominated as E6F6-B, was engineered to feature a knock-in of a B-cell receptor (BCR) that specifically recognizes HBsAg. This model served as a valuable tool for investigating the temporal and spatial dynamics of humoral responses following therapeutic vaccination under continuous antigen exposure. Using a suite of immunological techniques, we elucidated the differentiation trajectory of HBsAg-specific B cells post-therapeutic vaccination in HBV carrier mice. RESULTS: Utilizing the E6F6-B transfer model, we observed a marked decline in antibody-secreting cells 2 weeks after vaccination. A dysfunctional and atypical pre-plasma cell population (BLIMP-1+ IRF4+ CD40- CD138- BCMA-) emerged, manifested by sustained BCR signaling. By deploying an antibody to purge persistent HBsAg, we effectively prompted the therapeutic vaccine to provoke conventional plasma cell differentiation. This resulted in an enhanced anti-HBs antibody response and facilitated HBsAg clearance. CONCLUSIONS: Sustained high levels of HBsAg limit the ability of therapeutic hepatitis B vaccines to induce the canonical plasma cell differentiation necessary for anti-HBs antibody production. Employing a strategy combining antibodies with vaccines can surmount this altered humoral response associated with atypical pre-plasma cells, leading to improved therapeutic efficacy in HBV carrier mice. IMPACT AND IMPLICATIONS: Therapeutic vaccines aimed at combatting HBV encounter suboptimal humoral responses in clinical settings, and the mechanisms impeding their effectiveness have remained obscure. Our research, utilizing the innovative E6F6-B mouse transfer model, reveals that the persistence of HBsAg can lead to the emergence of an atypical pre-plasma cell population, which proves to be relevant to the potency of therapeutic HBV vaccines. Targeting the aberrant differentiation process of these atypical pre-plasma cells stands out as a critical strategy to amplify the humoral response elicited by HBV therapeutic vaccines in carrier mouse models. This discovery suggests a compelling avenue for further study in the context of human chronic hepatitis B. Encouragingly, our findings indicate that synergistic therapy combining HBV-specific antibodies with vaccines offers a promising approach that could significantly advance the pursuit of a functional cure for HBV.


Assuntos
Hepatite B Crônica , Hepatite B , Camundongos , Humanos , Animais , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Vacinas contra Hepatite B/uso terapêutico , Anticorpos Anti-Hepatite B , Diferenciação Celular , Hepatite B/prevenção & controle , Hepatite B/tratamento farmacológico
6.
Adv Sci (Weinh) ; 11(14): e2305204, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38327127

RESUMO

Hepatocellular carcinoma (HCC) is a highly lethal malignant tumor, and the current non-invasive diagnosis method based on serum markers, such as α-fetoprotein (AFP), and des-γ-carboxy-prothrombin (DCP), has limited efficacy in detecting it. Therefore, there is a critical need to develop novel biomarkers for HCC. Recent studies have highlighted the potential of exosomes as biomarkers. To enhance exosome enrichment, a silicon dioxide (SiO2) microsphere-coated three-dimensional (3D) hierarchical porous chip, named a SiO2-chip is designed. The features of the chip, including its continuous porous 3D scaffold, large surface area, and nanopores between the SiO2 microspheres, synergistically improved the exosome capture efficiency. Exosomes from both non-HCC and HCC subjects are enriched using an SiO2-chip and performed RNA sequencing to identify HCC-related long non-coding RNAs (lncRNAs) in the exosomes. This study analysis reveales that LUCAT-1 and EGFR-AS-1 are two HCC-related lncRNAs. To further detect dual lncRNAs in exosomes, quantitative real time polymerase chain reaction (qRT-PCR) is employed. The integration of dual lncRNAs with AFP and DCP significantly improves the diagnostic accuracy. Furthermore, the integration of dual lncRNAs with DCP effectively monitors the prognosis of patients with HCC and detects disease progression. In this study, a liquid biopsy-based approach for noninvasive and reliable HCC detection is developed.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , alfa-Fetoproteínas/análise , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Biomarcadores Tumorais/genética , Exossomos/genética , Exossomos/química , Porosidade , Dióxido de Silício , Perfilação da Expressão Gênica
7.
J Hazard Mater ; 467: 133633, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335617

RESUMO

Cadmium (Cd) and arsenic (As) co-contamination is widespread and threatens human health, therefore it is important to investigate the bioavailability of Cd and As co-exposure. Currently, the interactions of Cd and As by in vitro assays are unknown. In this work, we studied the concurrent Cd-As release behaviors and interactions with in vitro simulated gastric bio-fluid assays. The studies demonstrated that As bioaccessibility (2.04 to 0.18 ± 0.03%) decreased with Cd addition compared to the As(V) single system, while Cd bioaccessibility (11.02 to 39.08 ± 1.91%) increased with As addition compared to the Cd single system. Release of Cd and As is coupled to proton-promoted and reductive dissolution of ferrihydrite. The As(V) is released and reduced to As(Ⅲ) by pepsin. Pepsin formed soluble complexes with Cd and As. X-ray photoelectron spectroscopy showed that Cd and As formed Fe-As-Cd ternary complexes on ferrihydrite surfaces. The coordination intensity of As-O-Cd is lower than that of As-O-Fe, resulting in more Cd release from Fe-As-Cd ternary complexes. Our study deepens the understanding of health risks from Cd and As interactions during environmental co-exposure of multiple metal(loid)s.


Assuntos
Arsênio , Cádmio , Compostos Férricos , Humanos , Pepsina A , Digestão
9.
J Control Release ; 365: 369-383, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972764

RESUMO

Micro/Nano-scale particles are widely used as vaccine adjuvants to enhance immune response and improve antigen stability. While aluminum salt is one of the most common adjuvants approved for human use, its immunostimulatory capacity is suboptimal. In this study, we modified risedronate, an immunostimulant and anti-osteoporotic drug, to create zinc salt particle-based risedronate (Zn-RS), also termed particulate risedronate. Compared to soluble risedronate, micronanoparticled Zn-RS adjuvant demonstrated increased recruitment of innate cells, enhanced antigen uptake locally, and a similar antigen depot effect as aluminum salt. Furthermore, Zn-RS adjuvant directly and quickly stimulated immune cells, accelerated the formulation of germinal centers in lymph nodes, and facilitated the rapid production of antibodies. Importantly, Zn-RS adjuvant exhibited superior performance in both young and aged mice, effectively protecting against respiratory diseases such as SARS-CoV-2 challenge. Consequently, particulate risedronate showed great potential as an immune-enhancing vaccine adjuvant, particularly beneficial for vaccines targeting the susceptible elderly.


Assuntos
Adjuvantes de Vacinas , Vacinas , Animais , Camundongos , Humanos , Idoso , Ácido Risedrônico/uso terapêutico , Alumínio , Adjuvantes Imunológicos , Imunização , Antígenos
10.
ACS Biomater Sci Eng ; 10(1): 525-536, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38099722

RESUMO

Piezoelectric materials have received increasing attention in bone regeneration due to their prominent role in bioelectricity in bone homeostasis. This study aimed to develop bioactive barium titanate-chitosan-graphene oxide piezoelectric nanoparticles (BCG-NPs) to improve biocompatibility and stimulate bone repair. Butterfly loops, hysteresis loops, and in vitro microcurrent studies on BCG-NPs confirmed their good piezoelectric properties. BCG-NPs exhibited enhanced alkaline phosphatase activity, mineralized nodule formation, and expression of osteogenic-associated proteins and genes in human umbilical cord Wharton's jelly-derived mesenchymal stem cells by creating microelectric environments in response to noninvasive ultrasound stimulation. Further, BCG-NPs upregulated intracellular calcium ions via electrical stimulation. They acted synergistically with piezo-type mechanosensitive ion channel component 1 and calcium-permeable cation channel transient receptor potential vanilloid 4 to activate osteogenic differentiation. In conclusion, ultrasound-assisted BCG-NPs created a microelectric environment that putatively promoted bone repair in a noninvasive manner.


Assuntos
Cálcio , Osteogênese , Humanos , Osteogênese/genética , Vacina BCG , Biomimética , Regeneração Óssea
11.
Nat Commun ; 14(1): 6933, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907478

RESUMO

Although aryl triflates are essential building blocks in organic synthesis, the applications as aryl radical precursors are limited. Herein, we report an organomediated electrochemical strategy for the generation of aryl radicals from aryl triflates, providing a useful method for the synthesis of aryl sulfonyl fluorides from feedstock phenol derivatives under very mild conditions. Mechanistic studies indicate that key to success is to use catalytic amounts of 9, 10-dicyanoanthracene as an organic mediator, enabling to selectively active aryl triflates to form aryl radicals via orbital-symmetry-matching electron transfer, realizing the anticipated C-O bond cleavage by overcoming the competitive S-O bond cleavage. The transition-metal-catalyst-free protocol shows good functional group tolerance, and may overcome the shortages of known methods for aryl sulfonyl fluoride synthesis. Furthermore, this method has been used for the modification and formal synthesis of bioactive molecules or tetraphenylethylene (TPE) derivative with improved quantum yield of fluorescence.

12.
Transl Pediatr ; 12(10): 1800-1809, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37969126

RESUMO

Background: Early recurrent intussusception (ERI) in children is common and seriously affects the physical and mental health of the children. There are few reports discussing risk factors for ERI in children, and this study aims to identify risk factors for ERI in children and build predictive models. Methods: We conducted a retrospective study of 787 children with no relapse intussusception (NRI) and 82 children with ERI between January 2011 and December 2021. Univariate and multifactorial stepwise logistic regression analysis was used to analyze the correlation between 11 factors and ERI, to determine the independent risk factors for ERI in children. The prediction model was established by independent risk factors and then verified. Results: Age, vomiting, bloody stools, and monocyte ratios were independently correlated with the composite endpoint (P<0.05). A nomogram was constructed and a calibration curve was plotted, using independent risk factors. Based on the disease's diagnostic score, the predictive model's performance was validated by using logistic regression receiver operating characteristic (ROC) curve detection, with area under the curve (AUC) value of 0.883 [95% confidence interval (CI): 0.846-0.920], and the calibration curve was close to the ideal diagonal line. In addition, the decision curve analysis (DCA) showed that the model had significant net benefits. Conclusions: Independent risk factors for ERI in children are age, vomiting, bloody stool, and monocyte ratio. Children older than 1 year in age, who lacked vomiting and bloody stool symptoms, and who exhibited an elevated ratio of monocytes were more likely to relapse early. The predictive model constructed herein can predict the early recurrence of children with ERI, providing a reference for clinicians' individualized judgments.

13.
Global Spine J ; : 21925682231213290, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37941315

RESUMO

STUDY DESIGN: Retrospective cohort study. OBJECTIVE: To build a predictive model for risk factors for failure of radiation therapy, hypothesizing a higher SINS would correlate with failure. METHODS: Patients with spinal metastasis being treated with radiation at a tertiary care academic center between September 2014 and October 2018 were identified. The primary outcome measure was radiation therapy failure as defined by persistent pain, need for re-irradiation, or surgical intervention. Risk factors were primary tumor type, Karnofsky and ECOG scores, time to treatment, biologically effective dose (BED) calculations using α/ß ratio = 10, and radiation modality. A logistic regression was used to construct a prediction model for radiation therapy failure. RESULTS: One hundred and seventy patients were included. Median follow up was 91.5 days. Forty-three patients failed radiation therapy. Of those patients, 10 required repeat radiation and 7 underwent surgery. Thirty-six patients reported no pain relief, including some that required re-irradiation and surgery. Total SINS score for those who failed reduction therapy was <7 for 27 patients (62.8%), between 7-12 for 14 patients (32.6%), and >12 for 2 patients (4.6%). In the final prediction model, BED (OR .451 for BED > 43 compared to BED ≤ 43; P = .174), Karnofksy score (OR .736 for every 10 unit increase in Karnofksy score; P = .008), and gender (OR 2.147 for male compared to female; P = .053) are associated with risk of radiation failure (AUC .695). A statistically significant association between SINS score and radiation therapy failure was not found. CONCLUSIONS: In the multivariable model, BED ≤ 43, lower Karnofksy score, and male gender are predictive for radiotherapy failure. SINS score was among the candidate risk factors included in multivariable model building procedure, but it was not selected in the final model. LEVEL OF EVIDENCE: Prognostic level III.

14.
Antimicrob Agents Chemother ; 67(11): e0056323, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37902403

RESUMO

Daptomycin (DAP) is effective against methicillin-resistant Staphylococcus aureus (MRSA). However, reduced susceptibility to DAP in MRSA may lead to treatment failures. We aim to determine the distribution of DAP minimum inhibitory concentrations (MICs) and DAP heteroresistance (hDAP) among MRSA lineages in China. A total of 472 clinical MRSA isolates collected from 2015 to 2017 in China were examined for DAP susceptibility. All isolates (n = 472) were found to be DAP susceptible, but 35.17% (166/472) of them exhibited a high DAP MIC (MIC >0.5 µg/mL). The high DAP MIC group contained a larger proportion of isolates with a higher vancomycin or teicoplanin MIC (>1.5 µg/mL) than the low DAP MIC group (19.3% vs 7.8%, P < 0.001; 22.3% vs 8.2%, P < 0.001). We compared the clonal complex (CC) distributions and clinical characteristics in MRSA isolates stratified by DAP MIC. CC5 isolates were less susceptible to DAP (MIC50 = 1 µg/mL) than CC59 isolates (MIC50 = 0.5 µg/mL, P < 0.001). Population analysis profiling revealed that 5 of 10 ST5 and ST59 DAP-susceptible MRSA isolates investigated exhibited hDAP. The results also showed that CC5 MRSA with an agrA mutation (I238K) had a higher DAP MIC than those with a wild-type agrA (P < 0.001). The agrA-I238K mutation was found to be associated with agr dysfunction as indicated by the loss of δ-hemolysin production. In addition, agr/psmα defectiveness was associated with hDAP in MRSA. Whole-genome sequencing analysis revealed mutations in mprF and walR/walK in DAP-resistant subpopulations, and most DAP-resistant subpopulations (6/8, 75%) were stable. Our study suggests that the increased DAP resistance and hDAP in MRSA may threaten the effectiveness against MRSA infections.


Assuntos
Daptomicina , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Daptomicina/farmacologia , Daptomicina/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Vancomicina/farmacologia , Testes de Sensibilidade Microbiana
15.
Front Vet Sci ; 10: 1181916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841466

RESUMO

Introduction: Newcastle disease virus (NDV) is prevalent worldwide with an extensive host range. Among birds infected with velogenic NDV strains, chickens experience high pathogenicity and mortality, whereas ducks mostly experience mild symptoms or are asymptomatic. Ducks have a unique, innate immune system hypothesized to induce antiviral responses. Circular RNAs (circRNAs) are among the most abundant and conserved eukaryotic transcripts. These participate in innate immunity and host antiviral response progression. Methods: In this study, circRNA expression profile differences post-NDV infection in duck embryo fibroblast (DEF) cells were analyzed using circRNA transcriptome sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to reveal significant enrichment of differentially expressed (DE) circRNAs. The circRNA-miRNA-mRNA interaction networks were used to predict the related functions of circRNAs. Moreover, circ-FBXW7 was selected to determine its effect on NDV infection in DEFs. Results: NDV infection altered circRNA expression profiles in DEF cells, and 57 significantly differentially expressed circRNAs were identified post-NDV infection. DEF responded to NDV by forming circRNAs to regulate apoptosis-, cell growth-, and protein degradation-related pathways via GO and KEGG enrichment analyses. circRNA-miRNA-mRNA interaction networks demonstrated that DEF cells combat NDV infection by regulating cellular pathways or apoptosis through circRNA-targeted mRNAs and miRNAs. circ-FBXW7 overexpression and knockdown inhibited and promoted viral replication, respectively. DEF cells mainly regulated cell cycle alterations or altered cellular sensing to combat NDV infection. Conclusion: These results demonstrate that DEF cells exert antiviral responses by forming circRNAs, providing novel insights into waterfowl antiviral responses.

16.
Neuroepidemiology ; 57(6): 413-422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37734325

RESUMO

INTRODUCTION: Cerebral small vessel disease (CSVD) is a significant burden of morbidity and mortality among elderly people around the world. Epidemiological data with complete CSVD evaluations and a large sample size in the general population are still limited. METHODS: Community-dwelling residents in Lishui city in China from the cross-sectional survey of the Polyvascular Evaluation for Cognitive Impairment and Vascular Events (PRECISE) study were included in this study from 2017 to 2019. All participants underwent 3 Tesla brain magnetic resonance images to assess CSVD imaging markers. Demographic and risk factor data were collected. The general and age-specific prevalence of lacune, confluent white matter hyperintensity (WMH), moderate-severe enlarged perivascular spaces (EPVS), cerebral microbleed (CMB), and total CSVD score (an ordinal scale from 0 to 4, counting the presence of four imaging markers of CSVD) was evaluated. Associations between vascular risk factors and these markers were analyzed by multivariable logistic regression. RESULTS: A total of 3,063 participants were enrolled. The mean age was 61.2 years and 46.5% were men. The most prevalent CSVD marker was confluent WMH (16.7%), followed by CMB (10.2%), moderate-severe EPVS in the basal ganglia (BG-EPVS) (9.8%), and lacune (5.6%). 30.5% of the participants have at least one of the four markers (total CSVD score ≥1 points). The prevalence of CSVD markers increases as age increases. Age and hypertension were independent risk factors for four CSVD markers and the total CSVD score. CONCLUSIONS: In this Chinese cohort with community-based adults aged 50-75 years, our findings showed a prevalence of 30.5% for CSVD. The most prevalent CSVD marker was confluent WMH, followed by CMB, moderate-severe BG-EPVS, and lacune. The risk factors for CSVD must be strictly screened and controlled in adults living in the community.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Masculino , Idoso , Adulto , Humanos , Pessoa de Meia-Idade , Feminino , Prevalência , Estudos Transversais , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/epidemiologia , Encéfalo , Imageamento por Ressonância Magnética , Fatores de Risco
17.
J Biomed Mater Res A ; 111(11): 1808-1821, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37548424

RESUMO

Polyetheretherketone (PEEK) is a promising material for use in orthopedic implants, but its bio-inert character and lack of antibacterial activity limit its applications in bone repair. In the present study, considering the advantages of PEEK in self-initiated graft polymerization and of hydrogels in bone tissue engineering, we constructed a hydrogel coating (GPL) consisting of Gelatin methacryloyl (GelMA), methacrylamide-modified ε-poly-l-lysine (ε-PLMA) and Laponite on PEEK through UV-initiated crosslinking. The coating improved the hydrophilicity of PEEK, and the coating degraded slowly so that approximately 80% was retained after incubation in PBS for 8 weeks. In vitro studies revealed that as compared to culturing on PEEK, culturing on PEEK-GPL led to enhanced viability and adhesion of cultured human umbilical cord Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs). Due to the synergistic effect of the micron-scale three-dimensional surface and Laponite, PEEK-GPL exhibited a significantly improved induction of osteogenic differentiation of hWJ-MSCs compared to PEEK, as demonstrated by increased alkaline phosphatase activity, matrix mineralization, and expression of osteogenesis-related genes. Furthermore, PEEK-GPL showed antibacterial activity upon contact with Staphylococcus aureus and Escherichia coli, and this activity would be maintained before complete degradation of the hydrogel because the ε-PLMA was cross-linked covalently into the coating. Thus, PEEK-GPL achieved both osteogenesis and infection prevention in a single simple step, providing a feasible approach for the extensive use of PEEK in bone implants.


Assuntos
Osteogênese , Polilisina , Humanos , Polilisina/farmacologia , Hidrogéis/farmacologia , Polimerização , Polietilenoglicóis/farmacologia , Cetonas/farmacologia , Antibacterianos/farmacologia , Propriedades de Superfície
18.
Biomed Pharmacother ; 163: 114717, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37435722

RESUMO

Despite several promising candidates, there is a paucity of drug treatments available for patients suffering from retinal diseases. An important reason for this is the lack of suitable delivery systems that can achieve sufficiently high drug uptake in the retina and its photoreceptors. A promising and versatile method for drug delivery to specific cell types involves transporter-targeted liposomes, i.e., liposomes surface-coated with substrates for transporter proteins highly expressed on the target cell. We identified strong lactate transporter (monocarboxylate transporter, MCT) expression on photoreceptors as a potential target for drug delivery vehicles. To evaluate MCT suitability for drug targeting, we used PEG-coated liposomes and conjugated these with different monocarboxylates, including lactate, pyruvate, and cysteine. Monocarboxylate-conjugated and dye-loaded liposomes were tested on both human-derived cell-lines and murine retinal explant cultures. We found that liposomes conjugated with pyruvate consistently displayed higher cell uptake than unconjugated liposomes or liposomes conjugated with lactate or cysteine. Pharmacological inhibition of MCT1 and MCT2 reduced internalization, suggesting an MCT-dependent uptake mechanism. Notably, pyruvate-conjugated liposomes loaded with the drug candidate CN04 reduced photoreceptor cell death in the murine rd1 retinal degeneration model while free drug solutions could not achieve the same therapeutic effect. Our study thus highlights pyruvate-conjugated liposomes as a promising system for drug delivery to retinal photoreceptors, as well as other neuronal cell types displaying high expression of MCT-type proteins.


Assuntos
Lipossomos , Ácido Pirúvico , Humanos , Animais , Camundongos , Cisteína , Sistemas de Liberação de Medicamentos , Células Fotorreceptoras de Vertebrados , Ácido Láctico , Transportadores de Ácidos Monocarboxílicos , Polietilenoglicóis
19.
Adv Exp Med Biol ; 1415: 429-434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440068

RESUMO

The retina has the highest energy consumption of any tissue in the human body. Remarkably, to satisfy its energy demand, the retina appears to rely mostly on aerobic glycolysis, which results in the production and release of large amounts of lactate. In the present study, we compared two different methods to assess lactate release from in vitro organotypic retinal explants cultured under entirely controlled, serum-free conditions. We used a standard lactate assay kit and 1H-nuclear magnetic resonance (NMR) spectroscopy-based analysis. We found that during the culturing of retinal explants derived from wild-type mice, lactate was released in large amounts and that the two different methods agreed well with each other. When comparing wild-type retina with degenerating rd1 mouse retina, we found the latter to release significantly higher amounts of lactate. Hence, degenerating retina may have an even higher energy demand and metabolic rate compared to healthy retina. We conclude that the use of lactate measurement can be a reliable and simple readout to evaluate ongoing retinal metabolism.


Assuntos
Ácido Láctico , Degeneração Retiniana , Humanos , Camundongos , Animais , Ácido Láctico/metabolismo , Retina/metabolismo , Degeneração Retiniana/metabolismo
20.
Nat Commun ; 14(1): 4117, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433761

RESUMO

The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants and "anatomical escape" characteristics threaten the effectiveness of current coronavirus disease 2019 (COVID-19) vaccines. There is an urgent need to understand the immunological mechanism of broad-spectrum respiratory tract protection to guide broader vaccines development. Here we investigate immune responses induced by an NS1-deleted influenza virus vectored intranasal COVID-19 vaccine (dNS1-RBD) which provides broad-spectrum protection against SARS-CoV-2 variants in hamsters. Intranasal delivery of dNS1-RBD induces innate immunity, trained immunity and tissue-resident memory T cells covering the upper and lower respiratory tract. It restrains the inflammatory response by suppressing early phase viral load post SARS-CoV-2 challenge and attenuating pro-inflammatory cytokine (Il6, Il1b, and Ifng) levels, thereby reducing excess immune-induced tissue injury compared with the control group. By inducing local cellular immunity and trained immunity, intranasal delivery of NS1-deleted influenza virus vectored vaccine represents a broad-spectrum COVID-19 vaccine strategy to reduce disease burden.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Animais , Cricetinae , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...